Principios de la termodinámica y sus aplicaciones

1ra Ley de la termodinámica

El principio de conservación de la energía expresado por la primera ley de la termodinámica. «Aunque la energía tome muchas formas, la cantidad total de energía es constante, y cuando la energía desaparece en una forma, aparece simultáneamente en otras formas.» Lo que se entiende por conservación de energía es la conservación de la energía, no la cantidad. Formas de la energía Existen distintas formas de energía (eléctrica, térmica, mecánica, cinética, potencial, magnética, química y nuclear), su suma total conforma la energía total E de un sistema, la cual se denota por unidad de masa mediante e y se expresa:

Solo se trataría el cambio de la energía.

A la energía total de un sistema se le puede asignar un valor de cero (E = 0) en algún punto de referencia conveniente. Para el análisis termodinámico, se consideran dos grupos que conforman la energía total de un sistema:

  • Macroscópicas: son las que posee un sistema como un todo en relación con cierto marco de referencia exterior, como las energías cinética y potencial.
  • Microscópicas: son las que se relacionan con la estructura molecular de un sistema y el grado de la actividad molecular, y son independientes de los marcos de referencia externos. La suma de todas las formas microscópicas de energía se denomina energía interna de un sistema y se denota mediante (U). La energía interna representa la energía molecular de un sistema y puede existir en las formas sensible, latente, química y nuclear.

El flujo másico (m) se define como la cantidad de masa que fluye por una sección transversal por unidad de tiempo, y se relaciona con el flujo volumétrico (V), el cual es el volumen de un fluido que fluye por una sección transversal por unidad de tiempo, mediante:

La tasa de energía relacionada con un fluido que fluye a una tasa de (m) es análoga a (E = me), donde (η) es la densidad del flujo. La energía macroscópica de un sistema se relaciona con el movimiento y la influencia de algunos factores externos como la gravedad, el magnetismo, la electricidad y la tensión superficial.


Energía cinética

La energía que posee un sistema como resultado de su movimiento en relación con cierto marco de referencia se llama energía cinética (EC). La energía mecánica se define como la forma de energía que se puede convertir completamente en trabajo mecánico de modo directo mediante un dispositivo mecánico como puede ser una turbina ideal. Se expresa por unidad de masa y en forma de tasa como:

La energía que posee un sistema como resultado de su incremento de altura en un campo gravitacional se llama energía potencial (EP):

Los efectos magnéticos, eléctricos y de tensión superficial son significativos solo en casos especiales. Las formas de energía que constituyen la energía total de un sistema pueden estar contenidas o almacenadas por este. Las únicas dos formas de interacción de energía relacionadas con un sistema cerrado son la transferencia de calor y trabajo.

Al aplicar la primera ley a un proceso, la esfera de influencia del proceso se divide en dos partes, el sistema (la parte donde se lleva a cabo el proceso) y sus alrededores (todo aquello con lo que el sistema interactúa). El sistema puede tener cualquier tamaño dependiendo de las condiciones particulares. En su forma más básica, la primera ley puede escribirse como:

Δ(Energía del sistema) + Δ(Energía de alrededores) = 0

Donde (Δ) significa cambios finitos. El cambio de energía de los alrededores es:

Δ(energía de alrededores) = +-Q +-W

La selección de los signos utilizados con (Q) y (W):

Q(+) –> W(-)

Si la masa del sistema es constante y solo participan cambios en las energías interna, cinética y potencial:

Δ(energía del sistema) = ΔU + ΔE_k + Δ E_p

En casos especiales, habrá suministro de calor y trabajo; en dado caso, ambas partes tienen signo positivo. La energía puede cruzar las fronteras de un sistema cerrado en la forma de calor o trabajo. Para los volúmenes de control, la energía se puede transportar también mediante la masa.


Si la transferencia de energía se debe a una diferencia de temperatura entre un sistema cerrado y el exterior, es calor; de lo contrario, es trabajo. El trabajo es la energía transferida cuando una fuerza actúa sobre un sistema a lo largo de una distancia.

Los sistemas cerrados a menudo experimentan procesos que no causan ningún cambio en su energía potencial o cinética externas, sino solamente en su energía interna:

ΔU = Q + W

Estas ecuaciones se aplican a procesos donde participan cambios finitos en la energía interna del sistema. Para cambios diferenciales, la ecuación se escribe:

dU = dQ + dW

Esta última ecuación se aplica para sistemas cerrados que tienen cambios en su energía interna. Para el Sistema Internacional (SI), su unidad es el Joule (J), y en el sistema inglés, son ft·lbf y el Btu.

Estado termodinámico y funciones de estado:

Las siguientes ecuaciones sugieren que los términos de los miembros izquierdos tienen una naturaleza distinta a los que aparecen en los miembros derechos:

ΔU + ΔE_k + Δ E_p = Q + W

ΔU = Q + W

Los términos de energía cinética y potencial toman en cuenta cambios en lo que se ha llamado formas externas de energía. En términos de energía interna, refleja cambios a nivel molecular o microscópico, es decir, en el estado interno o estado termodinámico del sistema.

Este es el estado que se encuentra reflejado por sus propiedades termodinámicas, entre las cuales se encuentran la temperatura, la presión y la densidad.

Energía interna: suma de toda forma de energía microscópica de un sistema (U):

U_2 – U_1 = ΔU

ΔU = Q – W

Q = ΔU + W


«En cualquier proceso termodinámico, el calor que absorbe o pierde es igual a la suma del trabajo realizado por el sistema de su energía interna». 
La diferencial de una función de estado representa un cambio infinitesimal en su valor. La integración de tal diferencial resulta en una diferencia finita entre dos de sus valores:

B+fXx2sKJXqrwAAAABJRU5ErkJggg==

Las diferenciales del calor o trabajo no son cambios, sino cantidades infinitesimales; por lo tanto, al integrar, se obtienen cantidades finitas. Para sistemas cerrados que experimentan el mismo cambio en el estado mediante procesos diferentes, los experimentos muestran que las cantidades de calor y trabajo necesarias difieren de un proceso a otro, pero que la suma Q + W es la misma para todos los procesos.

ΔU = Q + W

Esta ecuación proporciona el mismo valor de ΔU sin importar el proceso, siempre y cuando el cambio en el sistema tenga los mismos estados inicial y final.

La energía interna de un sistema, al igual que su volumen, depende de la cantidad de materia que hay en él; se dice que estas propiedades son extensivas. En contraste, la temperatura y la presión, que son las principales coordenadas termodinámicas para fluidos homogéneos, son independientes de la cantidad de materia.

La multiplicación de una cantidad que está dada por unidad, por la masa (o número de moles) del sistema proporciona la cantidad total, esto es:

V^t = mV

U^t = mU


La energía interna es útil para calcular calor y trabajo en ciertas maquinarias, todo gracias a que es una función de estado. No se puede tabular cada (Q) y (W) de todos los procesos posibles; son demasiados datos. Sin embargo, las funciones de estado intensivas son propiedades de la materia. Pueden medirse y tabularse en función de temperatura y presión de la sustancia, para su futuro uso en el cálculo de (Q) y (W) para cualquier proceso.

Eficiencia en la Conversión de Energía

La eficiencia es uno de los términos más utilizados en termodinámica e indica qué tan bien se lleva a cabo un proceso de conversión o transferencia de energía. Se expresa en términos de la salida deseada y la entrada requerida:

\[ ext{Eficiencia} = rac{ ext{Salida deseada}}{ ext{Salida requerida}} \

Por regla general, la eficiencia de un equipo que quema combustible se basa en el poder calorífico del combustible, que es la cantidad de calor liberado cuando se quema por completo una unidad de combustible y los productos de la combustión se enfrían a la temperatura ambiente.

Eficiencia del equipo de combustión:

η_{equip,comb} = rac{Q_{util}}{HV}

donde (Q_{util}) es la cantidad de calor liberado durante la combustión, y HV es el poder calorífico del combustible quemado.

Esta eficiencia puede adoptar diferentes nombres según la unidad de combustión, como eficiencia de horno (η_{horno}), eficiencia de calentador (η_{calentador}), o eficiencia de calefactor (η_{calefactor}). El poder calorífico de un combustible será diferente dependiendo de si el agua en los productos de la combustión se encuentra en forma líquida o de vapor.


El poder calorífico se denomina poder calorífico inferior o LHV cuando el agua sale como vapor, y poder calorífico superior o HHV cuando el agua de los gases de combustión se condensa por completo, de manera que también se recupera el calor de vaporización.

La diferencia entre esos dos poderes caloríficos es igual al producto de la cantidad de agua y la entalpía de vaporización del agua a temperatura ambiente.

Transferencia de Calor

El calor se puede transferir de tres formas: conducción, convección y radiación.

La conducción es la transferencia de energía de las partículas más energéticas de una sustancia hacia las adyacentes menos energéticas como resultado de sus interacciones. Puede ocurrir en sólidos, líquidos o gases; en estos últimos dos, la conducción se debe a las colisiones de las moléculas durante su movimiento aleatorio. En los sólidos, se debe a la combinación de la vibración de las moléculas en una red y el transporte de energía mediante electrones libres.

(K) es la constante de proporcionalidad (conductividad térmica del material), medida de la capacidad del material para conducir calor.

En el caso límite de (Δx –> 0), la ecuación anterior se reduce a la forma diferencial. La ecuación 20 es conocida como la ley de Fourier de conducción de calor e indica que la tasa de conducción de calor en una dirección es proporcional a la gradiente de la temperatura en esa misma dirección.

La convección es el modo de transferencia de energía entre una superficie sólida y el líquido o gas adyacente que está en movimiento, y tiene que ver con los efectos combinados de conducción. Más rápido sea este, mayor es la transferencia de calor por convección. Hay convección forzada si el fluido es forzado a fluir en un tubo o sobre una superficie por medios externos como un ventilador, una bomba o el viento.


Y la convección libre (o natural) si el movimiento del fluido es ocasionado por las fuerzas de flotación por diferencias de densidad debidas a la variación de temperatura en el fluido, donde ( h ) es el coeficiente de transferencia de calor por convección, ( A ) es la superficie en la cual tiene lugar la transferencia de calor, ( T_s ) es la temperatura de la superficie y ( T_f ) es la temperatura.

La radiación es la energía que emite la materia en forma de ondas electromagnéticas (fotones) como resultado de cambios en las configuraciones electrónicas de los átomos o moléculas. A diferencia de la conducción y la convección, la transferencia de energía por radiación no requiere la presencia de un medio. La radiación es un fenómeno volumétrico, y los sólidos, líquidos y gases emiten, absorben o transmiten radiación de distintos grados.

donde ( A ) es el área superficial, ( σ = 5.67×10^{-8} {W/m}^2 \

Otra propiedad importante de la radiación de una superficie es su absorbancia, ( α ), que es la fracción de la energía de radiación incidente sobre una superficie absorbida. La ley de Kirchhoff de la radiación establece que la emisividad y la absorbancia de una superficie son iguales con las mismas temperatura y longitud de onda.

ε = α

donde ( \

(˙Q_{incidente}) es la tasa a la que la radiación incide sobre la superficie. La tasa neta de transferencia de calor por radiación entre dos superficies se determina mediante la ecuación:


Entalpía

Existen varias relaciones de las ecuaciones de estado; la entalpía relaciona la energía interna con los trabajos realizados.

H^t = U^t + PV^t

Donde (U^t) corresponde a la energía interna, y (P) y (V^t) a la presión y volumen absoluto, respectivamente. Las unidades de todos los términos deben ser las mismas; (H^t) tiene unidades de energía. Su unidad corresponde a (N \

Normalmente, el resultado se transforma en Btu para el sistema internacional dividiendo por 778.16.

Puesto que (U^t), (V^t) y (P) son funciones de estado de (H^t), esta última también será una ecuación de estado.

dH = dU + d(PV)

La integración de la ecuación quedaría:

ΔH = ΔU + Δ(PV)

Dicha expresión se aplica cada vez que ocurre un cambio finito en el sistema; es una propiedad extensiva al igual que la energía interna. Si la entalpía se vuelve específica, se convierte en una propiedad intensiva. Es útil como propiedad termodinámica debido a que aparece muy a menudo.

Equilibrio

El término «equilibrio» denota una condición estática, es decir, ausencia de cambio. Sin embargo, en termodinámica también significa que no existen tendencias al cambio.

Reglas de las fases

El estado de un fluido homogéneo queda determinado cada vez que se dan valores definidos a dos propiedades termodinámicas intensivas. Cuando dos fases están en equilibrio, el estado del sistema se determina al especificar una de dichas propiedades. A continuación, se presenta una regla de la regla de Gibbs:

F = 2 – π + N

Donde (π) corresponde al número de fases y (N) al número de especies químicas del sistema.


La segunda ley de la termodinámica se usa también para determinar los límites teóricos en el desempeño de sistemas de ingeniería de uso ordinario, como máquinas térmicas y refrigeradores, así como predecir el grado de terminación de las reacciones químicas. Esta estrechamente asociada con el concepto de perfección. De hecho la segunda ley define la perfección para los procesos termodinámicos.
Se puede usar para cuantificar el nivel de perfección de un proceso y señalar la dirección para eliminar eficazmente las imperfecciones.

Se puede usar para cuantificar el nivel de perfección de un proceso y señalar la dirección para eliminar eficazmente las imperfecciones, establece que un proceso ocurre en cierta dirección, no en cualquiera.

Un proceso no sucede a menos que satisfaga tanto la primera como la segunda leyes de la termodinámica.
En el desarrollo de la segunda ley de la termodinámica es muy conveniente tener un cuerpo hipotético que posea una capacidad de energía térmica relativamente grande (masa por calor específico) que pueda suministrar o absorber cantidades finitas de calor sin experimentar ningún cambio de temperatura.
Tal cuerpo se llama depósito de energía térmica, o solo depósito.

Un depósito que suministra energía en la forma de calor se llama fuente, y otro que absorbe energía en la forma de calor se llama sumidero.

Los depósitos de energía térmica suelen denominarse depósitos de calor porque proveen o absorben energía en forma de calor.

La transferencia de calor desde fuentes industriales hacia el ambiente es de interés primordial para los ambientalistas, así como para los ingenieros.

Máquinas térmicas: dispositivo capaz de convertir el trabajo en calor de manera directa y por completo, pero convertir el calor en trabajo requiere algunos dispositivos.


UFi0AAAAASUVORK5CYII=

Las máquinas térmicas y otros dispositivos cíclicos por lo común requieren un fluido hacia y desde el cual transfiere calor mientras experimentan un ciclo.

Al fluido se le conoce como fluido de trabajo.

El dispositivo productor de trabajo que mejor se ajusta a la definición de una máquina térmica es la central eléctrica de vapor, la cual es una máquina de combustión externa, es decir, la combustión se lleva a cabo fuera de la máquina y la energía térmica liberada durante este proceso se transfiere al vapor como calor.

Eficiencia térmica: fracción de la entrada de calor que se convierte en salida de trabajo neto es una medida del desempeño de una máquina térmica y se llama eficiencia térmica.

Para las máquinas térmicas, la salida deseada es la de trabajo neto, mientras que la entrada que requieren es la cantidad de calor suministrado al fluido de trabajo.

Kelvin-Planck y Clausius

El enunciado de Kelvin-Planck de la segunda ley de la termodinámica establece que ninguna máquina térmica puede producir una cantidad neta de trabajo mientras intercambia calor con un solo deposito.


El enunciado de Clausius de la segunda ley expresa que ningún dispositivo puede transferir calor de un cuerpo más frio a otro más caliente sin dejar un efecto sobre los alrededores.

Cualquier dispositivo que incumpla con la primera o la segunda ley de la termodinámica se llama máquina de movimiento perpetuo.

Proceso reversible e irreversible: se dice que un proceso es reversible si tanto el sistema como los alrededores pueden volver a su condición original, cualquier otro proceso es irreversible. Los efectos que hacen que un proceso sea irreversible son la fricción, la expansión o comprensión de no cuasiequilibrio y la transferencia de calor debida a una diferencia finita de temperatura, las cuales se denominan irreversibles.

Ciclo de Carnot: ciclo reversible compuesto por cuatro procesos reversibles, dos isotérmicos y dos adiabáticos. Los principios de Carnot establecen que las eficiencias térmicas de las máquinas térmicas reversibles que operan entre dos depósitos son las mismas, y que ninguna máquina de este tipo es más eficiente que una reversible que opera entre los mismos dos depósitos.

Estos enunciados crean el fundamento para establecer una escala termodinámica de temperatura relacionada con las transferencias de calor entre un dispositivo reversible y los depósitos a alta y baja temperatura.

Una máquina térmica que opera en un ciclo reversible de Carnot se llama máquina térmica de Carnot.

Entropía: la 2da ley de la termodinámica conduce a la definición de una nueva propiedad llamada entropía que es una medida cuantitativa de desorden microscópico para un sistema. Cualquier cantidad cuya integral cíclica es cero es una propiedad, y la entropía.

El cambio de entropía es ocasionado por la transferencia de calor, el flujo másico e irreversibilidades. La transferencia de calor hacia un sistema aumenta la entropía, y la transferencia de calor desde un sistema la disminuye.

El efecto de las irreversibilidades siempre es aumentar la entropía.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.