Teoría de la Elasticidad
No presupone ninguna particularidad en la geometría del sólido que pudiera conducir a simplificaciones aproximadas del modelo. Sus resultados son por tanto de aplicación a sólidos de cualquier geometría. Habitualmente, en especial al abordar un primer estudio, suelen asumirse un conjunto de hipótesis que por una parte simplifican el modelo, y por otra parte se adaptan bien al comportamiento del acero y de otras aleaciones metálicas. En concreto supondremos material homogéneo (las propiedades son iguales en distintos puntos) e isótropo (en cualquier punto dado las propiedades no dependen de la dirección de observación), comportamiento elástico (el sólido recupera su forma inicial tras la descarga) y lineal (existe proporcionalidad entre cargas y desplazamientos), pequeños desplazamientos y cambios de forma (lo bastante para que sea buena aproximación plantear el equilibrio en la configuración indeformada), y ausencia de efectos dinámicos.
Resistencia de Materiales
Estudia el sólido con forma de barra esbelta, generalmente recta. Se asumen el resto de hipótesis básicas usadas en la Teoría de la Elasticidad. La particularidad geométrica de que una dimensión sea mucho mayor que las otras dos, permite realizar simplificaciones muy útiles en el modelo matemático. Esta tipología de barra es mayoritariamente utilizada tanto en estructuras de edificación como de ingeniería civil, y en algunos casos en máquinas y mecanismos, de ahí la importancia de su estudio particular.
Teoría de Estructuras
Para enunciarlo brevemente, podemos decir que estudia el comportamiento de los sistemas de barras conectadas entre sí, bajo las mismas hipótesis que la Resistencia de Materiales. En realidad la línea divisoria entre ambas disciplinas es confusa, siendo habitual incluir estudios de sistemas de barras sencillos en el ámbito de la Resistencia de Materiales. Por otra parte, muchos textos sobre Teoría de Estructuras abordan el estudio de fenómenos (como pueden ser la plasticidad o los grandes desplazamientos) que se salen de las hipótesis más típicas del primer estudio de la Elasticidad y la Resistencia de Materiales.
Terreno rocoso
Es el más ventajoso desde el punto de vista resistente. No obstante su resistencia es menor en rocas con alto grado de “meteorización” (fragmentación debida a los agentes medioambientales) que en “rocas sanas” (con poca meteorización).
Terrenos cohesivos
Están compuestos fundamentalmente por arcillas. Sus propiedades pueden variar considerablemente según el tipo de arcillas presentes, y según factores relacionados con la presencia de agua (la saturación y la permeabilidad del terreno, fundamentalmente).
Terrenos sin cohesión
Se trata de gravas y arenas, ya sean finas o gruesas. Son terrenos formados por partículas de tamaño mucho mayor que las micropartículas que típicamente forman los terrenos cohesivos.
Están menos afectados por la presencia del agua, ya que en general presentan un buen drenaje.
Terrenos no apropiados
Tales son los terrenos de contenido orgánico, ya que sus propiedades evolucionarán en el tiempo al evolucionar la materia orgánica (generalmente descomponerse). Los terrenos con yesos tampoco son apropiados, ya que el yeso es soluble en agua, y no es posible en la práctica el evitar permanentemente la presencia de ésta en el terreno
Las figuras 8.10 muestran algunos modos de fallo del terreno en situación de “estado límite último”, tal como se describen en el Código Técnico de la Edificación [6]. Las zonas sombreadas corresponden a terreno que no se ha movido, y las cuadriculadas a terreno que experimenta movimiento. La línea que las separa sería la superficie de fallo por cortadura, una vez que el deslizamiento puntual estudiado anteriormente ha progresado hasta formar esa superficie. La figura 8.10a ilustra el “hundimiento” del terreno debido al empuje vertical de un elemento estructural (típicamente de cimentación). La configuración asimétrica mostrada no es la más frecuente en cimentaciones, siendo más usual (y quizá más sencilla a efectos ilustrativos) una configuración simétrica como la que mencionaremos más tarde. La figura 8.10b representa el “deslizamiento” producido por el empuje horizontal del propio terreno sobre un muro de contención de tierras. La figura 8.10c ilustra el posible “vuelco” del muro de contención, también debido al empuje horizontal del terreno. Finalmente, la figura 8.10d muestra dos posibles casos de “inestabilidad global” en los que una gran porción de terreno se mueve conjuntamente, sin que haya fallo local del terreno próximo a la edificación. Como se ilustra, este tipo de rotura del suelo sólo es preocupante en cimientos próximos a taludes, o en laderas inclinadas.