Magnitudes inversamente correlacionadas

Razón y proporción numérica

Razón entre dos números

Siempre que hablemos de Razón entre dos números nos estaremos refiriendo al cociente (el resultado de dividirlos) entre ellos.

Entonces:


Razón entre dos números a y b es el cociente entre


Por ejemplo, la razón entre 10 y 2 es 5, ya que

Y la razón entre los números 0,15  y  0,3  es

Proporción numérica

Ahora, cuando se nos presentan dos razones para ser comparadas entre sí, para ver como se comportan entre ellas, estaremos hablando de una proporción numérica.

Entonces:


Los números a, b, c y d forman una proporción si la razón entre a y b es la misma que entre c y d.
Es decir    
proporcionalidad004
Se lee “es a b como c es a d”

Los números 2,  5  y  8,  20 forman una proporción, ya que la razón entre 2 y 5 es la misma que la razón entre 8 y 20.

Es decir

En la proporción proporcionalidad004 hay cuatro términos; a y d se llaman extremosc y b se llaman medios.


La propiedad fundamental de las proporciones es: 

En toda proporción, el producto de los extremos es igual al de los medios

Así, en la proporción anterior

Se cumple que el producto de los extremos nos da 2 x 20 = 40 y el producto de los medios nos da 5 x 8 = 40

proporcionalidad006



Comprendido el concepto de proporción como una relación entre números o magnitudes, ahora veremos que esa relación puede darse en dos sentidos:

Las dos magnitudes pueden subir o bajar (aumentar o disminuir) o bien si una de las magnitudes sube la otra bajo y viceversa.

Si ocurre, como en el primer caso, que las dos magnitudes que se comparan o relacionan pueden subir o bajar en igual cantidad, hablaremos de Magnitudes directamente proporcionales.

Si ocurre como en el segundo caso, en que si una magnitud sube la otra baja en la misma cantidad, hablaremos de Magnitudes inversamente proporcionales.

MAGNITUDES DIRECTAMENTE PROPORCIONALES

Si dos magnitudes son tales que a doble, triple…
cantidad de la primera corresponde doble, triple…
cantidad de la segunda, entonces se dice que esas magnitudes son directamente proporcionales.

Ejemplo

Un saco de papas pesa 20 kg. ¿Cuánto pesan 2 sacos?


Un cargamento de papas pesa 520 kg ¿Cuántos sacos de 20 kg se podrán hacer?


Número de sacos

1

2

3


26


Peso en kg

20

40

60


520


Para pasar de la 1ª fila a la 2ª basta multiplicar por 20

Para pasar de la 2ª fila a la 1ª dividimos por 20

Observa que

Las magnitudes número de sacos y peso en kg son directamente proporcionales


La constante de proporcionalidad para pasar de número de sacos a kg es 20


Esta manera de funcionar de las proporciones nos permite adentrarnos en lo que llamaremos Regla de tres y que nos servirá para resolver un gran cantidad de problemas matemáticos.

PSU: Matemática;


Pregunta 07_2006

Pregunta 06_2007

REGLA DE TRES SIMPLE DIRECTA

Ejemplo 1

En 50 litros de agua de mar hay 1.300 gramos de sal. ¿Cuántos litros de agua de mar contendrán 5.200 gramos de sal?


Como en doble cantidad de agua de mar habrá doble cantidad de sal; en triple, triple, etc. Las magnitudes cantidad de agua ycantidad de sal son directamente proporcionales.

Si representamos por x el número de litros que contendrá 5200 gramos de sal, y formamos la siguiente tabla:


Litros de agua

50

x

Gramos de sal

1.300

5.200

Se verifica la proporción:


Y como en toda proporción el producto de medios es igual al producto de extremos (en palabras simples, se multiplican los números en forma cruzada) resulta:

50 por 5.200 = 1.300 por x

Es decir

En la práctica esto se suele disponer del siguiente modo:



Esta forma de plantear y resolver problemas sobre proporciones se conoce con el nombre de regla de tres simple directa.

Ver: El Interés y el dinero

Ver: PSU: Matemática;


Pregunta 02_2005

Pregunta 05_2005

Pregunta 02_2006

Ejemplo 2

Un automóvil gasta 5 litros de bencina cada 100 km. Si quedan en el depósito 6 litros, ¿cuántos kilómetros podrá recorrer el automóvil?


Luego, con 6 litros el automóvil recorrerá 120 km

MAGNITUDES INVERSAMENTE PROPORCIONALES

Si dos magnitudes son tales que a doble, triple…
cantidad de la primera corresponde la mitad, la tercera parte.
.. de la segunda, entonces se dice que esas magnitudes son inversamente proporcionales.

Ejemplo

Si 3 hombres necesitan 24 días para hacer un trabajo, ¿cuántos días emplearán 18 hombres para realizar el mismo trabajo?

En este caso a doble número de trabajadores, el trabajo durará la mitad; a triple número de trabajadores, el trabajo durará la tercera parte, etc. Por tanto, las magnitudes son inversamente proporcionales (también se dice que son indirectamente proporcionales).

Formamos la tabla:


Hombres

3

6

9


18

Días

24

12

8




Vemos que los productos 3 por 24 = 6 por 12 = 9 por 8 = 72

Por tanto 18 por x = 72

O sea que los 18 hombres tardarán 4 días en hacer el trabajo

Nótese que aquí la constante de proporcionalidad, que es 72, se obtiene multiplicando las magnitudes y que su producto será siempre igual.

Importante:


Como regla general, la constante de proporcionalidad entre dos magnitudes inversamente proporcionales se obtiene multiplicando las magnitudes entre sí, y el resultado se mantendrá constante.

Ver. PSU: Matematica, Pregunta 10

REGLA DE TRES SIMPLE INVERSA (O INDIRECTA)


Ejemplo 1

Un ganadero tiene forraje suficiente para alimentar 220 vacas durante 45 días. ¿Cuántos días podrá alimentar con la misma cantidad de forraje a 450 vacas?

Vemos que con el mismo forraje, si el número de vacas se duplica, tendrá para la mitad de días; a triple número de vacas, tercera parte de días, etc. Por tanto, son magnitudes inversamente proporcionales.

X = número de días para el que tendrán comida las 450 vacas

Nº de vacas

220

450

Nº de días

45

x

Se cumple que: 220 por 45 = 450 por x, de donde

En la práctica esto se suele disponer del siguiente modo:



Luego 450 vacas podrán comer 22 días

Esta forma de plantear y resolver problemas sobre proporciones se conoce con el nombre de regla de tres simple inversa.

Ejemplo 2

Para envasar cierta cantidad de vino se necesitan 8 toneles de 200 litros de capacidad cada uno. Queremos envasar la misma cantidad de vino empleando 32 toneles. ¿Cuál deberá ser la capacidad de esos toneles?


Pues la cantidad de vino = 8 por 200 = 32 por x

Debemos tener 32 toneles de 50 litros de capacidad para poder envasar la misma cantidad de vino


PROPORCIONALIDAD COMPUESTA DE MAGNITUDES

Regla de tres compuesta. Método de reducción a la unidad

Ejemplo 1: Proporcionalidad directa

Cuatro chicos durante 10 días de campamento han gastado en comer 25.000 pesos. En las mismas condiciones ¿cuánto gastarán en comer 6 chicos durante 15 días de campamento?

§Doble número de chicos acampados el mismo número de días gastarán el doble. Luego las magnitudes número de chicos y dinero gastado son directamente proporcionales.

§El mismo número de chicos, si acampan el doble número de días gastarán el doble. Luego las magnitudes número de días de acampada y dinero gastado son directamente proporcionales.

Hemos relacionado las dos magnitudes conocidas, nº de chicos y nº de días con la cantidad desconocida, gasto


SABEMOS QUE
image031.gif
pesos
REDUCCIÓN A LA UNIDAD
image033.gif
pesos
image035.gif
pesos
image037.gif
pesos
BÚSQUEDA DEL RESULTADO
image039.gif
pesos

Ejemplo 2: Proporcionalidad inversa

15 obreros trabajando 6 horas diarias, tardan 30 días en realizar un trabajo. ¿Cuántos días tardarán en hacer el mismo trabajo 10 obreros, empleando 8 horas diarias?

§Doble número de obreros trabajando el mismo número de días trabajarán la mitad de horas al día para realizar el trabajo. Por tanto el número de obreros y el número de días de trabajo son inversamente proporcionales.

§Doble número de horas diarias de trabajo el mismo número de obreros tardarán la mitad de días en realizar el trabajo. Luego el número de horas diarias de trabajo y el número de días de trabajo son inversamente proporcionales.

Hemos relacionado las dos magnitudes conocidas, nº de obreros y nº de horas diarias de trabajo, con la cantidad desconocida, nº de días de trabajo.

SABEMOS QUE


REDUCCIÓN A LA UNIDAD


image045.gif

BÚSQUEDA DEL RESULTADO



Por tanto, 10 obreros empleando 8 horas diarias tardarán 33,75 días


Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.