Archivo de la etiqueta: Álgebra

Inecuaciones y Relaciones: Conceptos Clave y Ejemplos Prácticos

Representación en la Recta Numérica

Las soluciones de las inecuaciones se pueden representar en la recta numérica.

Si el signo es < o >, usamos un círculo abierto (sin incluir el número).

Si el signo es ≤ o ≥, usamos un círculo cerrado (incluyendo el número).

Ejemplo:

Para x > 2, en la recta numérica marcamos un círculo abierto en 2 y una flecha hacia la derecha.

Para x ≥ -2, usamos un círculo cerrado en -2 y una flecha hacia la derecha.

Resolución de Inecuaciones con Fracciones Seguir leyendo “Inecuaciones y Relaciones: Conceptos Clave y Ejemplos Prácticos” »

Conceptos Clave de Álgebra: Sucesiones, Ecuaciones y Más

Sucesiones

Una sucesión es un conjunto ordenado de elementos (figuras o números). Cada elemento se llama término de la sucesión. En la sucesión a1, a2, a3, a4, el tercer término es a3. El subíndice indica la posición del término. Por ejemplo: a1, a2 = 3, a3 = 9, a4 = 27.

Expresiones Algebraicas Equivalentes

Cada sucesión tiene una regla general, pero existen distintas maneras de expresarla algebraicamente, y todas ellas son equivalentes.

Si dos o más expresiones algebraicas corresponden a Seguir leyendo “Conceptos Clave de Álgebra: Sucesiones, Ecuaciones y Más” »

Conceptos Matemáticos Esenciales: Potencias, Fracciones, Álgebra y Geometría

Conceptos Fundamentales de Matemáticas

Potencias

Una potencia es una expresión abreviada que se utiliza para escribir una multiplicación de factores iguales.

  • Base: Es el factor que se repite.
  • Exponente: El número de veces que se repite la base.

Propiedades de las potencias:

Explorando Aritmética y Álgebra: Fundamentos, Historia y Leyes Esenciales

Aritmética y Álgebra: Explorando los Fundamentos de las Matemáticas

La aritmética es la rama de las matemáticas que se encarga del estudio de los números y las operaciones que se realizan con ellos: suma, resta, multiplicación y división. El término proviene del griego aritmetikos, compuesto por la raíz arithmos (números) y el sufijo –tikos (ciencia): ciencia de los números.

Se conoce como álgebra a la rama de la matemática en la cual las operaciones son generalizadas empleando números, Seguir leyendo “Explorando Aritmética y Álgebra: Fundamentos, Historia y Leyes Esenciales” »

Programa de Fundamentos de Matemáticas: Temario y Criterios de Evaluación

B.O.C.M. Núm. 268 LUNES 10 DE NOVIEMBRE DE 2008 Pág. 25

Fundamentos de Matemáticas

Contenidos:

ARITMÉTICA Y ÁLGEBRA

Productos Notables y Estadística: Conceptos y Ejemplos Prácticos

Productos Notables

Caso 1: Cuadrado de una Suma

El cuadrado de una suma es igual al cuadrado del primer término, más el doble producto del primer término por el segundo, más el cuadrado del segundo término.

Fórmula: (x + a)2 = x2 + 2xa + a2

Ejemplos:

  • (x + 10)2 = x2 + 2(x)(10) + 102 = x2 + 20x + 100
  • (x + 3/5)2 = x2 + 2(x)(3/5) + (3/5)2 = x2 + 6/5x + 9/25
  • (3x + 8)2 = (3x)2 + 2(3x)(8) + 82 = 9x2 + 48x + 64

Caso 2: Cuadrado de una Resta

El cuadrado de una resta es igual al cuadrado del primer término, Seguir leyendo “Productos Notables y Estadística: Conceptos y Ejemplos Prácticos” »

Conceptos Fundamentales de Cálculo y Álgebra: Ejercicios Resueltos

Conceptos Fundamentales de Cálculo y Álgebra: Ejercicios Resueltos

1. Fórmula para Calcular la Distancia entre Dos Puntos Relacionada con el Producto Escalar de Dos Vectores

El módulo de un vector corresponde con la longitud de dicho vector (AB) y, por lo tanto, con la distancia entre el punto A y el punto B. Por lo tanto, |AB| = √(AB * AB)

2. Definición de Límite de una Función en un Punto, Continuidad de una Función en un Punto y Continuidad de una Función en un Intervalo. Ejemplos de Seguir leyendo “Conceptos Fundamentales de Cálculo y Álgebra: Ejercicios Resueltos” »

Resolución de Problemas Matemáticos: Ecuaciones y Sistemas

Problema 1

Busca dos números tales que la suma del doble del mayor con la mitad del menor sea menos de 150, y sabiendo que cuatro veces el menor supera en 22 unidades al triple del mayor.

Solución:

  • 1º (mayor): x
  • 2º (menor): y

Sistema de ecuaciones:

  • 2x + y/2 = 150
  • 4y = 3x + 22

Resolución por sustitución:

  1. 4x + y = 300
  2. y = (3x + 22) / 4
  3. 4x + (3x + 22) / 4 = 300
  4. 16x + 3x + 22 = 1200
  5. 19x = 1200 – 22
  6. x = 1178 / 19
  7. x = 62
  8. y = (3 * 62 + 22) / 4 = (186 + 22) / 4 = 208 / 4
  9. y = 52

Respuesta:

Fórmulas y Conceptos Esenciales de Matemáticas: Geometría, Álgebra y Trigonometría

Fórmulas y Conceptos Esenciales de Matemáticas

Geometría

Poliedros

Cálculo del número de aristas (A)

A = Fn / 2

Ejemplo: Determinar el número de aristas de un poliedro con 3 caras cuadrangulares, 2 caras pentagonales y 4 caras triangulares.

A = (3 * 4 + 2 * 5 + 4 * 3) / 2 = 17

Teorema de Euler

V + F = A + 2

Donde:

  • V: Número de vértices
  • F: Número de caras
  • A: Número de aristas

Área y Volumen de una Esfera

  • Área (A): A = 4πR2
  • Volumen (V): V = (4/3)πR3

Volumen de una Pirámide y un Cono

V = (Abase * h) Seguir leyendo “Fórmulas y Conceptos Esenciales de Matemáticas: Geometría, Álgebra y Trigonometría” »

Conceptos y Propiedades Matemáticas: Álgebra y Cálculo

Propiedades de un Cuerpo

Las propiedades de un cuerpo se dividen en dos operaciones: suma y producto.

Suma

Para todo x, y, z que pertenecen a los números reales (x, y, z ∈ ℝ):

  • Asociatividad: (x + y) + z = x + (y + z)
  • Conmutatividad: x + y = y + x
  • Elemento neutro: Existe un único 0 ∈ ℝ tal que x + 0 = 0 + x = x
  • Simetría: Para cada x ∈ ℝ, existe un (-x) ∈ ℝ tal que x + (-x) = (-x) + x = 0

Producto

Para todo x, y, z que pertenecen a los números reales (x, y, z ∈ ℝ):