Archivo de la etiqueta: Espacio Vectorial

Conceptos Fundamentales de Álgebra Lineal: Espacios Vectoriales y Matrices

Espacios Vectoriales

Un espacio vectorial sobre un cuerpo ℝ es un conjunto V dotado de dos operaciones: una operación interna (suma de vectores) y una operación externa (producto de un vector por un escalar), que verifican una serie de propiedades.

Propiedades de la Operación Interna (Suma de Vectores)

La suma de vectores (V, +) cumple:

  1. Propiedad asociativa: (𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤) ∀ 𝑢, 𝑣, 𝑤 ∈ 𝑉
  2. Propiedad conmutativa: 𝑢 + 𝑣 = 𝑣 + 𝑢 ∀ 𝑢, 𝑣 Seguir leyendo “Conceptos Fundamentales de Álgebra Lineal: Espacios Vectoriales y Matrices” »

Aplicaciones Lineales, Isomorfismos y Diagonalización de Matrices: Conceptos Clave

Aplicaciones Lineales e Isomorfismos

Sean E y F dos espacios vectoriales sobre K y sea T : E→F una aplicación. Diremos que T es una aplicación lineal si verifica:

  • T(u + v) = T(u) + T(v), ∀u, v ∈ E.
  • T(αu) = αT(u), ∀α ∈ K, ∀u ∈ E.

Isomorfismo: Si T : E→ F es una aplicación lineal biyectiva (inyectiva y suprayectiva), diremos que T es un isomorfismo.

Núcleo e Imagen

Sea T : E→F una aplicación lineal.

Conceptos Fundamentales de Álgebra Lineal: Teoremas y Demostraciones

Teorema de Rouché-Frobenius

Sea AX = B un sistema de m ecuaciones lineales con n incógnitas:

  • Si rg(A) ≠ rg(A*), el sistema es incompatible.
  • Si rg(A) = rg(A*) = n, el sistema es compatible determinado.
  • Si rg(A) = rg(A*) < n, el sistema es compatible indeterminado.

Espacio Vectorial: Definición y Propiedades

Sea V un conjunto no vacío. Supongamos que en V hay definida una operación suma, que denotaremos por +, y una operación producto por un escalar, que denotaremos por *. Diremos que (V, +, Seguir leyendo “Conceptos Fundamentales de Álgebra Lineal: Teoremas y Demostraciones” »

Funciones como Vectores en Espacios Vectoriales y Operadores en Mecánica Cuántica

Funciones como Vectores

Las funciones pueden considerarse como vectores en un espacio vectorial, con los valores de la función en diferentes puntos de coordenadas o los coeficientes de expansión de la función en una base siendo los componentes del vector a lo largo de los ejes de coordenadas en el espacio correspondiente.

Hermitiano Adjunto

El adjunto hermitiano, de un vector o una matriz, es el complejo conjugado de la transpuesta del vector o matriz. La hermitiana adjunta de la matriz A se escribe Seguir leyendo “Funciones como Vectores en Espacios Vectoriales y Operadores en Mecánica Cuántica” »