3.Prop del argumento de un complejo:
sean z, w de C con z y w /=0.Alph argumento de z; beta argumento de w, entonces:1) al+be argumento z*w.2)-al argumento de z conjugado y de 1/z.3)al-be argumento de z/w.
Demostración: 1)
si al es argumento de z, entonces z/|z|=cos(al)+isen(al). Si be es argumento de w, entonces w/|w|= cos(be)+ isen(be). Por tanto, (zw)/|zw|= zw/|z||w|= z/|z|*w/|w|= (cosal+ isenal)(cosbe+ isenbe)= (cosalcosbe-senalsenbe+ i(cosalsenbe+ senalconbe)= cos(al+be) +isen(al+be). Luego Seguir leyendo “Propiedades y Teoremas Clave del Cálculo: Una Exploración Exhaustiva” »