Archivo de la etiqueta: ortogonalidad

Aplicaciones Lineales, Isomorfismos y Diagonalización de Matrices: Conceptos Clave

Aplicaciones Lineales e Isomorfismos

Sean E y F dos espacios vectoriales sobre K y sea T : E→F una aplicación. Diremos que T es una aplicación lineal si verifica:

  • T(u + v) = T(u) + T(v), ∀u, v ∈ E.
  • T(αu) = αT(u), ∀α ∈ K, ∀u ∈ E.

Isomorfismo: Si T : E→ F es una aplicación lineal biyectiva (inyectiva y suprayectiva), diremos que T es un isomorfismo.

Núcleo e Imagen

Sea T : E→F una aplicación lineal.