Archivo de la etiqueta: regla de la cadena

Conceptos Clave de Derivación y Diferenciabilidad en Cálculo Multivariable

Derivadas y Diferenciabilidad

Definición

Sean f : C → Rq una función definida en un abierto C ⊆ Rp y aC.

Se llama derivada de f en a respecto de un vector u ∈ Rp, u ≠ 0, al valor limλ→0 (f (a + λu) − f (a)) / λ si este límite existe.

Se denota f ′(a), D [f (a)] o ∂f (a) / ∂u.

Si ||u|| = 1, se dice que Du [f (a)] es la derivada direccional de f en a en la dirección del vector u.

Si {e1,…,ep} es la base canónica de Rp, se dice que Dei [f (a)] es la derivada parcial i-ésima Seguir leyendo “Conceptos Clave de Derivación y Diferenciabilidad en Cálculo Multivariable” »

Propiedades de las Funciones Derivables: Teoremas y Demostraciones

Propiedades de las Exponenciales

Las siguientes propiedades son fundamentales en el cálculo y álgebra:

Propiedad I

\(a^{b+c} = a^b \cdot a^c\), Ecuacion

\(a \in \mathbb{R}^+\), Ecuacion

\(b, c \in \mathbb{R}\)

Propiedad II

\(a^{b-c} = \frac{a^b}{a^c}\), Ecuacion

\(a \in \mathbb{R}^+\), Ecuacion

\(b, c \in \mathbb{R}\)

Propiedad III

\(a^{b \cdot c} = (a^b)^c\), Ecuacion

\(a \in \mathbb{R}^+\), Ecuacion

\(b, c \in \mathbb{R}\)

Propiedad IV

\((a \cdot b)^c = a^c \cdot b^c\), Ecuacion

\(a, b \in \mathbb{R}^+\), Ecuacion

\(c \in \mathbb{R}\)

Propiedad V

\(\left(\frac{a}{b}\right) Seguir leyendo “Propiedades de las Funciones Derivables: Teoremas y Demostraciones” »