Archivo de la etiqueta: sucesiones

Conceptos Fundamentales del Cálculo: Puntos Fijos, Sucesiones y Teoremas Clave

Punto Fijo

Sea f:[a,b]→[a,b] una función continua. Entonces f tiene al menos un punto c∈[a,b] tal que f(c)=c. Estos puntos se llaman puntos fijos de f.

Demostración: Notar que si f:[a,b]→[a,b] entonces f(a),f(b)∈[a,b] luego a≤f(a),f(b)≤b. Definiendo la función auxiliar g(x)=f(x)-x, continua en [a,b], ésta verifica que g(a)=f(a)-a≥0 y g(b)=f(b)-b≤0.

  • Si g(a)=0 entonces f(a)=a (a es un punto fijo)
  • Si g(b)=0 entonces f(b)=b (b es un punto fijo)

En otro caso, g(a)>0 y g(b)<0.

Sucesiones

Definición Seguir leyendo “Conceptos Fundamentales del Cálculo: Puntos Fijos, Sucesiones y Teoremas Clave” »

Explorando Sucesiones, Progresiones, Vectores y Matrices: Conceptos Clave

Sucesiones y Progresiones

Sucesiones: Una sucesión es una función definida de los naturales en los reales. Las sucesiones se escriben como un conjunto numérico, donde el conjunto de partida es la posición del término. En una sucesión siempre necesitamos el término general, que se denota como

Progresión Aritmética

Es una sucesión en la cual, cada término se halla “sumándole al anterior un valor constante llamado razón”.

NOTA: No todas las sucesiones son progresiones.

Suma de los “n” Seguir leyendo “Explorando Sucesiones, Progresiones, Vectores y Matrices: Conceptos Clave” »