Archivo de la categoría: Matemáticas

Importancia de la Distribución de Estadísticos Muestrales en la Toma de Decisiones

¿Por qué es necesario conocer la distribución de un estadístico muestral?

El estadístico muestral es la forma de evaluar y comparar nuestros resultados empíricos con el modelo teórico propuesto, tanto cuando construimos intervalos de confianza como contrastes de hipótesis. Por tanto, tenemos que conocer su distribución para saber qué decisiones y con qué seguridad las tomamos en el problema.

¿Si queremos aumentar la precisión de un intervalo de confianza, cuál es preferible?

Depende del Seguir leyendo “Importancia de la Distribución de Estadísticos Muestrales en la Toma de Decisiones” »

Explorando Matrices, Determinantes y Sistemas de Ecuaciones Lineales

Matrices, Determinantes y Sistemas de Ecuaciones Lineales

Matriz: Es un conjunto ordenado de números dispuestos en filas y columnas. Si tenemos m filas y n columnas, diremos que es de orden o dimensión m x n.

Matriz Inversa: Dada una matriz A de orden n, llamaremos matriz inversa de A, a una matriz A-1 que verifica que A·A-1=A-1·A=I. No siempre existe A-1. Si una matriz A tiene inversa se dice que es regular y si no, singular.

Propiedades de las Matrices

Trasposición:

Propiedades:

  1. Asociativa: (AB) Seguir leyendo “Explorando Matrices, Determinantes y Sistemas de Ecuaciones Lineales” »

Contrastes de Hipótesis y Estimación Estadística: Conceptos Clave

1. Imaginemos un contraste de hipótesis en el que se rechaza la hipótesis nula a un nivel de significación del 5%. Si para la misma muestra se plantea un idéntico contraste pero el nivel de significación pasa a ser del 1%, elija la afirmación correcta: No se puede anticipar con seguridad si se aceptará o rechazará H0.

2. Elija la afirmación correcta sobre el p-valor en un contraste de hipótesis: Nos proporciona la probabilidad de encontrar una discrepancia entre la muestra y la hipótesis Seguir leyendo “Contrastes de Hipótesis y Estimación Estadística: Conceptos Clave” »

Conceptos Estadísticos: Momentos, Varianza, Medidas de Dispersión y Distribuciones

Definición de Momentos, Varianza y sus Propiedades

Momentos

Los momentos son valores deducidos de las distribuciones de frecuencias que forman parte de muchas características asociadas a estas distribuciones. Caracterizan a las distribuciones de frecuencia en el sentido de que las distribuciones serán lo más parecidas cuanto mayor número de momentos tengan iguales. Sirven para descubrir algún aspecto o propiedad de la variable. Son sucesos independientes. La probabilidad de que salga un momento Seguir leyendo “Conceptos Estadísticos: Momentos, Varianza, Medidas de Dispersión y Distribuciones” »

Propiedades Clave de Espacios Vectoriales: Dependencia Lineal, Bases y Generadores

Propiedades Clave de Espacios Vectoriales

A continuación, se presentan una serie de propiedades y teoremas fundamentales relacionados con espacios vectoriales, dependencia lineal, bases y sistemas generadores.

1. Dependencia Lineal en Conjuntos con Más Vectores que la Base

Si B = {V1, V2, …, Vn} es una base de un espacio vectorial V y A = {U1, U2, …, Uk} es un conjunto en V, entonces, si k > n, el conjunto A es linealmente dependiente (L.D.).

Demostración:

Sea 0 = A1U1 + A2U2 + … + AkUk . Seguir leyendo “Propiedades Clave de Espacios Vectoriales: Dependencia Lineal, Bases y Generadores” »

Operaciones con Matrices, Diagonalización y Formas Cuadráticas

Operaciones con Matrices

Suma de Matrices

  • Propiedad Asociativa: (A + B) + C = A + (B + C)
  • Elemento Neutro: A + 0 = 0 + A = A
  • Elemento Simétrico (Matriz Opuesta): -A + A = 0
  • Propiedad Conmutativa: A + B = B + A

Producto de un Número Real por una Matriz

  • t * (A + B) = t * A + t * B
  • (t * s) * A = t * (s * A)
  • 1 * A = A

Producto de Matrices

Fundamentos de Lógica, Conjuntos, Sucesiones, Funciones y Derivadas

Leyes Lógicas

1) Involución: ~ (~p)

2) Idempotencia: (p ∧ q) ≡ p; (p ∧ q) ≡ p

3) Conmutativa:

  • Disyunción: (p ∨ q) ≡ (q ∨ p)
  • Conjunción: (p ∧ q) ≡ (q ∧ p)

4) Asociativa: Disyunción: (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

5) Distributiva:

  • De la conjunción respecto de la disyunción: (p ∨ q) ∧ r ≡ (p ∧ r) ∨ (q ∧ r)
  • De la disyunción respecto de la conjunción: (p ∧ q) ∨ r ≡ (p ∨ r) ∧ (q ∨ r)

Ley de Morgan

a) La negación de una disyunción es equivalente a la conjunción Seguir leyendo “Fundamentos de Lógica, Conjuntos, Sucesiones, Funciones y Derivadas” »

Estudio de Continuidad y Derivabilidad de Funciones: Casos Prácticos

Estudio de la Continuidad y Derivabilidad de las Siguientes Funciones

Caso a)

En primer lugar, estudiamos la continuidad en x = 0.

función

continuidad

La función es continua, por lo tanto, podemos estudiar la derivabilidad.

función

función

No es derivable en x = 0.

Caso b)

función

En primer lugar, estudiamos la continuidad en x = 0.

continuidad

La función no es continua, por lo tanto, tampoco es derivable.

Caso c)

Hallar el punto en que y = |x + 2| no tiene derivada. Justificar el resultado representando su gráfica.

cálculo de derivadas

cálculo de derivadas

La función es continua en toda R .

cálculo de derivadas

f’(−2) Seguir leyendo “Estudio de Continuidad y Derivabilidad de Funciones: Casos Prácticos” »

Econometría: Conceptos Clave y Aplicaciones Prácticas

Econometría: Conceptos Clave y Aplicaciones Prácticas

T.1. 4) El fin fundamental de la econometría es efectuar predicciones

Falso. Si bien la predicción es uno de los objetivos de la econometría, su fin fundamental es el estudio y la predicción de fenómenos económicos. El proceso econométrico se compone de las siguientes fases:

  1. Fase previa: Planteamiento del problema económico.
  2. Fase 1. Especificación: Formulación del modelo matemático. Ejemplo: y = xβ + ε.
  3. Fase 2. Estimación: Cálculo Seguir leyendo “Econometría: Conceptos Clave y Aplicaciones Prácticas” »

Exploración Detallada de Espacios Vectoriales: Conceptos Clave y Propiedades

Espacios Vectoriales: Definiciones y Propiedades Fundamentales

Sea E un conjunto. Se dice que (E,+,·) es un espacio vectorial sobre R (o un R-espacio vectorial) si + y · son dos operaciones definidas sobre E que verifican:

  • + es una operación interna (suma de vectores)
  • · es una operación externa (producto por escalar)

Subespacios Vectoriales

Sea E un R-espacio vectorial. Diremos que E’ ⊂ E es un subespacio vectorial de E si ∀u, v ∈ E’ y ∀λ, μ ∈ R se verifica que: λu + μv ∈ E’.

Combinación Seguir leyendo “Exploración Detallada de Espacios Vectoriales: Conceptos Clave y Propiedades” »