Archivo de la categoría: Matemáticas

Función de Producción a Largo Plazo: Maximizando la Eficiencia Empresarial

Función de Producción a Largo Plazo

La función de producción a largo plazo se define como una ecuación o igualdad aritmética que muestra la cantidad máxima de unidades de un bien o el volumen de producción máximo que una empresa puede obtener en su proceso productivo mediante la combinación de diversas cantidades de factor X y de factor Y. A esta función de producción también se le denomina función de producción de proporciones variables.

Aritméticamente, esta función de producción Seguir leyendo “Función de Producción a Largo Plazo: Maximizando la Eficiencia Empresarial” »

Propiedades y Demostraciones de Aplicaciones: Inyectividad, Suprayectividad y Biyección

Propiedades de las Aplicaciones

  1. Si X1 ⊆ X2 ⊆ A, entonces f(X1) ⊆ f(X2).
  2. Si X1, X2 ⊆ A, entonces f(X1 ∪ X2) = f(X1) ∪ f(X2).
  3. Si X1, X2 ⊆ A, entonces f(X1 ∩ X2) ⊆ f(X1) ∩ f(X2).
  4. Si Y1 ⊆ Y2 ⊆ B, entonces f −1(Y1) ⊆ f −1(Y2).
  5. Si Y1, Y2 ⊆ B, entonces f −1(Y1 ∪ Y2) = f −1(Y1) ∪ f −1(Y2).
  6. Si Y1, Y2 ⊆ B, entonces f −1(Y1 ∩ Y2) = f −1(Y1) ∩ f −1(Y2).

Demostraciones

  1. Si b ∈ f(X1) existe x ∈ X1 tal que b = f(x) pero, como también x ∈ X2 pues X1 ⊆ X2, se Seguir leyendo “Propiedades y Demostraciones de Aplicaciones: Inyectividad, Suprayectividad y Biyección” »

Conceptos Fundamentales del Cálculo Integral y Ecuaciones Diferenciales

Integral de Riemann

La integral de Riemann se define como:

|ba f(x)dx= limh→∞ni=1 f(xi*) . ∆x = limh→∞ni=1 f(a + (b-a)/n) . (b-a)/n

Donde:

  • f es la función integrando.
  • xi* se toma como el extremo derecho o superior del i-ésimo subintervalo.
  • xi = xi* = a + i∆x = a + i(b-a)/n

Integración por Partes

Este método se utiliza generalmente cuando el integrando es un producto entre dos funciones, f(x) y g(x).

Partiendo de la regla del producto para derivadas:

d[f(x) . g(x)]/dx = f'(x) . g(x) Seguir leyendo “Conceptos Fundamentales del Cálculo Integral y Ecuaciones Diferenciales” »

Conceptos Fundamentales de Matemáticas: Lógica, Conjuntos, Funciones y Estadística

Lógica Proposicional y Tablas de Verdad

Cuadro de verdad

pq
VV
VF
FV
FF
  • La disyunción inclusiva (V), es todo V, excepto cuando ambas proposiciones son falsas (F + F = F).
  • La conjunción (Λ), es todo F, excepto cuando ambas proposiciones son verdaderas (V + V = V).
  • La implicación (), es todo V, excepto cuando el antecedente es verdadero y el consecuente es falso (V + F = F).

Ejemplos:

Conceptos Fundamentales de Cálculo: Ecuaciones Diferenciales, Integrales y Vectores

Ecuaciones Diferenciales

Una ecuación diferencial establece una relación entre la variable independiente (x), la función buscada y=f(x) y sus derivadas, y´, y´´, …, yn o sus diferenciales dx, dy.

Forma general: F(x,y,y´,y´´,…,yn)=0 (forma implícita)

Clasificación de las Ecuaciones Diferenciales

Conceptos Fundamentales del Cálculo: Puntos Fijos, Sucesiones y Teoremas Clave

Punto Fijo

Sea f:[a,b]→[a,b] una función continua. Entonces f tiene al menos un punto c∈[a,b] tal que f(c)=c. Estos puntos se llaman puntos fijos de f.

Demostración: Notar que si f:[a,b]→[a,b] entonces f(a),f(b)∈[a,b] luego a≤f(a),f(b)≤b. Definiendo la función auxiliar g(x)=f(x)-x, continua en [a,b], ésta verifica que g(a)=f(a)-a≥0 y g(b)=f(b)-b≤0.

  • Si g(a)=0 entonces f(a)=a (a es un punto fijo)
  • Si g(b)=0 entonces f(b)=b (b es un punto fijo)

En otro caso, g(a)>0 y g(b)<0.

Sucesiones

Definición Seguir leyendo “Conceptos Fundamentales del Cálculo: Puntos Fijos, Sucesiones y Teoremas Clave” »

Ejercicios resueltos de trigonometría y proporcionalidad de triángulos

1. Cálculo de lados de triángulos semejantes

La razón de proporcionalidad “k” de dos triángulos semejantes T y T’ es 2,3. Sabiendo que los costados del pequeño son a = 5 cm, b = 7 cm y c = 8 cm, calcula los lados del triángulo grande.

  • a’ = 2,3 * 5 cm = 11,5 cm
  • b’ = 2,3 * 7 cm = 16,1 cm
  • c’ = 2,3 * 8 cm = 18,4 cm

2. Cálculo de la razón de proporcionalidad

El perímetro del triángulo T es 12 dm y el de T’ es 2,8 m. Calcula la razón de proporcionalidad.

Para trabajar con la misma magnitud, Seguir leyendo “Ejercicios resueltos de trigonometría y proporcionalidad de triángulos” »

Soluciones a Ecuaciones Diferenciales: Métodos y Aplicaciones

Decaimiento Radiactivo: Determinación de la Masa en Función del Tiempo

Ejercicio 2.3.23

Suponga que la tasa con la que un elemento radiactivo (RA) decae es 40e-20t y la constante de decaimiento k = 5/s. Determine la masa para t con y0 = 10.

Procedemos de manera similar al Ejemplo 2 en la página 52 y obtenemos un análogo del problema del valor inicial (13), es decir,

dy / dt + 5y = 40e-20t,      y(0) = 10.           (2.10)

Así  P(t) ≡ 5 y µ(t) = e∫5dt = e5t. Multiplicando la ecuación Seguir leyendo “Soluciones a Ecuaciones Diferenciales: Métodos y Aplicaciones” »

Conceptos Fundamentales de Álgebra Lineal y Teoría de Conjuntos

Aplicaciones Lineales

Definiciones

Una aplicación lineal f: E → E’ es un homomorfismo de K-espacios vectoriales. Dados e1, e2 ∈ E y λ, μ ∈ K, se cumple que f(λe1 + μe2) = λf(e1) + μf(e2).

Una aplicación lineal f: E → E de un K-espacio vectorial en sí mismo es un endomorfismo.

Núcleo e Imagen de una Aplicación Lineal

Sea f: E → E’ una aplicación lineal entre dos espacios vectoriales.

Conceptos Fundamentales de Álgebra Lineal: Teoremas y Demostraciones

Teorema de Rouché-Frobenius

Sea AX = B un sistema de m ecuaciones lineales con n incógnitas:

  • Si rg(A) ≠ rg(A*), el sistema es incompatible.
  • Si rg(A) = rg(A*) = n, el sistema es compatible determinado.
  • Si rg(A) = rg(A*) < n, el sistema es compatible indeterminado.

Espacio Vectorial: Definición y Propiedades

Sea V un conjunto no vacío. Supongamos que en V hay definida una operación suma, que denotaremos por +, y una operación producto por un escalar, que denotaremos por *. Diremos que (V, +, Seguir leyendo “Conceptos Fundamentales de Álgebra Lineal: Teoremas y Demostraciones” »